
Discussion 2
Environment Diagrams and Higher-Order Functions

Antonio Kam

anto [at] berkeley [dot] edu

Announcements
Hog

Due today!

HW 2 released!

Due Thursday

CSM Sections have opened

Small group tutoring sections (5-6 people), get to see more of the content

I joined a CSM section and found it incredibly useful! Would highly recommend

Discussion videos exist! Walkthroughs for all problems

S lides by Antonio Kam (anto@) 2

Results from last discussion

S lides by Antonio Kam (anto@) 3

Questions and Comments from last section
The general thing that I enjoy are things completely unrelated to the actual course
itself partially because it doesn't take up time that could be done for going over
discussion, but also because it's fun

Environment Diagram practice problems

 i wonder what this discussion covers

HOFs

 i wonder what this discussion covers

Lambda examples and if we have time then currying is quite confusing.

 i wonder what this discussion covers

(Formerly) Waitlisted students:

You can get attendance credit for all discussions/labs you missed - just email me if
you haven't already for which discussions/labs you've missed

S lides by Antonio Kam (anto@) 4

Questions and Comments from last section
Exam prep

Will be at the end of this discussion

When you pass a string into a print statement, what is the type of the object that's
printed? It's different from the return statement that displays a string object instead.

It's not actually any type! Think of it as print outputting something that's
supposed to be 'human-readable', and return outputting something that's more
'machine-readable'

More on this later in the course

Getting more help at Lab

Just keep your hand raised, we'll get to you

Lab is also collaborative; there is no penalty for looking at other people's code!

S lides by Antonio Kam (anto@) 5

Questions and Comments from last section
Other questions

Check the solutions

(for environment diagrams in particular, use tutor.cs61a.org!)

During lab, feel free to collaborate on it! I know the lab room isn't the best for
collaboration, but lab is meant to be a space where collaboration is very much
allowed!

S lides by Antonio Kam (anto@) 6

https://tutor.cs61a.org/

Temperature Check
Environment Diagrams

lambda functions

Higher-order Functions

S lides by Antonio Kam (anto@) 7

All slides can be found on

teaching.rouxl.es

S lides by Antonio Kam (anto@) 8

https://teaching.rouxl.es/

Environment Diagrams

S lides by Antonio Kam (anto@) 9

Environment Diagrams
Environment diagrams are a great way to learn how coding languages work under the
hood

Keeps track of all the variables that have been defined, and the values that they hold

Done with the use of frames

Expressions evaluate to values:

1 + 1 → 2

Statements do not evaluate to values:

def statements, assignments, etc.

Statements change our environment

S lides by Antonio Kam (anto@) 10

Frames
The Global Frame exists by default

Frames list bindings between variables and their values

Frames also tell us how to look up values

S lides by Antonio Kam (anto@) 11

Assignment
Assignment statements bind a value to a name

The right side is evaluated before being bounded to the name on the left

= is not the same in Python and mathematics

These are then put in the correct frame in the environment diagram

x = 2 * 2 # 2 * 2 is evaluated before bound to the name x

S lides by Antonio Kam (anto@) 12

Assignment

x = 2 * 2 # 2 * 2 is evaluated before bound to the name x

S lides by Antonio Kam (anto@) 13

def statements
Creates function (objects), and binds them to a variable name

The function is not executed until called!

Name of the variable is the name of the function

Parent of the function is the frame where the function is defined

Keep track of:

Name

Parameters

Parent

S lides by Antonio Kam (anto@) 14

Example

def square(x):

return x * x

Keep track of the name, parameters, and parent!

Uses pointers (unlike for primitive values)

S lides by Antonio Kam (anto@) 15

Example

def square(x):

return x * x

Keep track of the name, parameters, and parent!

Uses pointers (unlike for primitive values)

S lides by Antonio Kam (anto@) 16

Call Expressions
(Order of operations for nested call expressions)

Example 1

add(5, 9) # 14

Example 2

x = 3

add(2, add(x, 4)) # 9

S lides by Antonio Kam (anto@) 17

Variable Lookup
Look in your current frame to find your variable

If it doesn't exist, repeat the same process in the parent frame (including the lookup
if you don't find anything)

If you reach the global frame and still can't find anything, the program errors

This is because the variable doesn't exist

S lides by Antonio Kam (anto@) 18

Variable Lookup

Example

(Assume that we're looking for variables inside f2)

S lides by Antonio Kam (anto@) 19

Variable Lookup

Example

Variable Value

x 34

y 23

z 12

If we start off in f2 , we already see z in f2 , so there is no need to look at the frame
above.

However, for the case of y , we do need to look up to its parent frame, and for x , we
need to lookup 2 levels

S lides by Antonio Kam (anto@) 20

New Frames
Label your frame with a unique index (convention is f1 , f2 , etc.)

Write down the name of the function object

Not necessarily the name of the variable!

Write down the parent that the function you're calling has

Separately, all frames (other than the global frame) have a return value

This can be None if nothing is specified

S lides by Antonio Kam (anto@) 21

Example

def fun(x):

 x = x * 2

return x

x = 30

fun(x)

S lides by Antonio Kam (anto@) 22

Example

def fun(x):

 x = x * 2

return x

x = 30

fun(x)

S lides by Antonio Kam (anto@) 23

Question 1
Draw the environment diagram for the following

def double(x):

return x * 2

hmmm = double

wow = double(3)

hmmm(wow)

S lides by Antonio Kam (anto@) 24

Attendance

links.rouxl.es/disc

S lides by Antonio Kam (anto@) 25

https://links.rouxl.es/disc

Question 2 (Walkthrough)

def f(x):

return x

def g(x, y):

if x(y):

return not y

return y

x = 3

x = g(f, x)

f = g(f, 0)

S lides by Antonio Kam (anto@) 26

lambda Functions and Higher-Order Functions
A lambda expression evaluates to a lambda function

Can be used as the operator for a function!

These functions work the same way as a normal function

Can be written in 1 line - faster way to make functions

Similar to def in usage, but different syntax

lambda s are especially useful when you want to use a function once and then never
use it again (will see examples of this)

S lides by Antonio Kam (anto@) 27

lambda Syntax
lambda <args>: <body>

What goes in <body> must be a single expression

S lides by Antonio Kam (anto@) 28

lambda Example

def func(x, y):

return x + y

func = lambda x, y: x + y

Notice how I have to do the binding to a variable myself

def i(j, k, l):

return j * k * l

i = lambda j, k, l: j * k * l

S lides by Antonio Kam (anto@) 29

lambda Example 2
lambda functions can also be used as the operator for a function!

(lambda x, y: x + y)(2, 3) # 5

Equivalent to

def add(x, y):

return x + y

add(2, 3) # 5

S lides by Antonio Kam (anto@) 30

Higher Order Functions (HOF)
HOFs are functions that can do the following things (can be both):

1. Take in other functions as inputs

2. Return a function as an output

You can treat a function as just an object or a value (there's nothing special about
them)

function and function() mean different things!

function refers to the object itself (in the environment diagram, it refers to what
the arrow is pointing to)

function() actually calls and executes the body of the function

S lides by Antonio Kam (anto@) 31

HOF Example 1 (Functions as input)

def double(x):

return x * 2

def square(x):

return x ** 2

def double_adder(f, x):

return f(x) + f(x)

double_adder(double, 3) # 12

double_adder(square, 3) # 18

Passed in two different functions

S lides by Antonio Kam (anto@) 32

HOF Example 2 (Functions as output)

def f(x):

def g(y):

return x + y

return g

a = f(2)

a(3) # 5

Same thing as calling f(2)(3)

S lides by Antonio Kam (anto@) 33

HOF Example 2

def f(x):

def g(y):

def h(z):

return x + y + z

return h

return g

lambda x: lambda y: lambda z: x + y + z

The two above are equivalent statements!

(Notice how the lambda one takes up far less space!)

S lides by Antonio Kam (anto@) 34

Worksheet!
S lides by Antonio Kam (anto@) 35

Currying
Currying is one application of the HOFs from earlier.

lambda x: lambda y: x + y

Instead of just any expression on the inside (for example x + y), we use a function!

def pow(x, y):

 x ** y

def curried_pow(x):

def f(y):

return pow(x, y)

return f

curried_pow(3)(2)

is the same as

pow(3, 2)

You will need as many inner functions as you have arguments

S lides by Antonio Kam (anto@) 36

Currying
Currying is the process of turning a function that takes in multiple arguments to one
that takes in one argument.

What's the point?

Sometimes functions with 1 argument are far easier to deal with

Can create a bunch of functions that have slightly different starting values which
saves on repeating code

Useful for the map function (it requires functions that have only 1 argument)

Kind of hard to see the benefits until you write production code

S lides by Antonio Kam (anto@) 37

Worksheet!
S lides by Antonio Kam (anto@) 38

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 39

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 40

https://links.rouxl.es/feedback

