Discussion 2

Environment Diagrams and Higher-Order Functions

Antonio Kam

Announcements

e Hog released!
o Due July 6th (Next Wednesday)
o Checkpoint
= Submit with Phase 1 complete by Friday (July 1st) for 1 pt.
o Extra Credit, 1 pt, (cannot use extension on this)
= Highly recommend doing it
= Submit the entire project on July 5th
o Solo project! (Other projects will allow collaboration)
e HW 1 released!
o Due Thursday (6/30)

e Tutoring Sections have opened!

Slides by Antonio Kam (anto@)

https://tutorials.cs61a.org/

Questions and Comments from last discussion

Are you doing anything else other than CS 61A this summer?

38 responses

® Yes
® No

Slides by Antonio Kam (anto@)

Questions and Comments from last discussion

e Assignments are always due at on the specified due date

e |ab O Attendance - if you didn't get attendance then, you're fine - | just put
attendance up on the board as practice

o One thing worth noting is that Lab O does not count for lab attendance!
o This is similar for discussion O, but doesn't matter as much!

e Oriisagoodgame
o The music is partially what got me into orchestral arranging ««

e CS61Aruns at double the speed over the summer - the workload might seem quite
intense, and that's because it is! You're doing 2 weeks worth of material in 1 week.

Slides by Antonio Kam (anto@)

Temperature Check ¢

e Environment Diagrams

o functions

e Higher-order Functions

Slides by Antonio Kam (anto@)

All slides can be found on

teaching.rouxl.es

https://teaching.rouxl.es/

Environment Diagrams &*

Environment Diagrams

e Environment diagrams are a great way to learn how coding languages work under the
hood

e Keeps track of all the variables that have been defined, and the values that they hold
o Done with the use of frames

e Expressions evaluate to values:
- (KNI - B

e Statements do not evaluate to values:
O statements, assignments, etc.

e Statements change our environment

Slides by Antonio Kam (anto@)

Frames
e The exists by default

e Frames list bindings between variables and their values

e Frames also tell us how to look up values

Slides by Antonio Kam (anto@)

Assignment

e Assignment statements bind a value to a name
o Theright side is evaluated before being bounded to the name on the left
o = is not the same in Python and mathematics

e These are then put in the correct framein the environment diagram

X = * # 2 * 2 is evaluated before bound to the name x

Slides by Antonio Kam (anto@)

10

Assignment

X = * # 2 * 2 is evaluated before bound to the name x

(/\\@\)at ?fﬁM@

NC L/:\— & rQSl/(H' of Qj\mlw\\\‘t\j
L x)

Slides by Antonio Kam (anto@)

11

statements

e Creates function (objects), and binds them to a variable name
e The function is not executed until called!
e Name of the variable is the name of the function
e Parent of the function is the frame where the function is defined
e Keep track of:
o Name
o Parameters

o Parent

Slides by Antonio Kam (anto@)

12

Example

square(x) :

X * X

e Keep track of the name, parameters, and parent!

e Uses pointers (unlike for primitive values)

Slides by Antonio Kam (anto@)

13

Example

def square(x):

return x * x

e Keep track of the name, parameters, and parent!

e Uses pointers (unlike for primitive values)

(./\\’D\”‘L ?Mme

SJUANQ L_.__——-—"‘"> ‘QU\A(_ kw\

Slides by Antonio Kam (anto@)

()’”“. Lram&

1

V\&M*’ J/
==
‘—"\l'/") P o= [O‘OhLY
Squmeore (3 [fred =)
7"'

?(,(O\Mll"{s

14

Call Expressions

Example 1

add(5, 9) # 14

Example 2

X =

add(, add(x, 7)) # 9

Slides by Antonio Kam (anto@)

15

Variable Lookup «

e | ook inyour current frame to find your variable

e |fit doesn't exist, repeat the same process in the parent frame (including the lookup
if you don't find anything)

e |f youreach the global frame and still can't find anything, the program errors

o This is because the variable doesn't exist %

Slides by Antonio Kam (anto@)

16

Variable Lookup

Example

(alpbsll Frave

v 3%
(paceat = qhbal)

b 22
Z (24

(Assume that we're looking for variables inside)

Slides by Antonio Kam (anto@)

17

Variable Lookup

Example

Variable Value

X 34

y 23
Z 12

e If we start off in], we already see H in [#, so there is no need to look at the frame
above.

* However, for the case of [§], we do need to look up to its parent frame, and for [, we
need to lookup 2 levels

Slides by Antonio Kam (anto@)

New Frames

e Label your frame with a unique index (convention is [, [, etc.)
e Write down the name of the function object

o Not necessarily the name of the variable!
e Write down the parent that the function you're calling has

e Separately, all frames (other than the global frame) have a return value
o This can be if nothing is specified

Slides by Antonio Kam (anto@)

19

Example

Slides by Antonio Kam (anto@)

20

Example

def fun(x):
X =X *
return x

X =
fun(x)

Slides by Antonio Kam (anto@)

21

Question 1 (5 minutes)

Draw the environment diagram for the following

double(x):
X *

hmmm = double
wow = double(')
hmmm (wow)

Slides by Antonio Kam (anto@)

22

Attendance

links.rouxl.es/disc

Slides by Antonio Kam (anto@)

https://links.rouxl.es/disc

Question 2 (Walkthrough)

X =
»(=
f =

Slides by Antonio Kam (anto@) 24

Functions and Higher-Order Functions

¢ A expression evaluates to a function
o Can be used as the operator for a function!

e These functions work the same way as a normal function
o Can be writtenin 1 line - faster way to make functions
o Similar to in usage, but different syntax

o [BIMEs are especially useful when you want to use a function once and then never
use it again (will see examples of this)

Slides by Antonio Kam (anto@)

25

Syntax

ll 1ambda <args>: <body>

e What goes in must be a single expression

Slides by Antonio Kam (anto@)

26

Example

func X, Y: X +Yy
Notice how I have to do the binding to a variable myself

i, k, 1:j * k * 1

Slides by Antonio Kam (anto@)

27

Example 2

functions can also be used as the operator for a function!
(X, y: x +y)(",) #5
Equivalent to

add(
X + Yy

add(,

Slides by Antonio Kam (anto@)

28

Higher Order Functions (HOF)

e HOFs are functions that can do the following things (can be both):
1. Take in other functions as inputs
2. Return a function as an output

 You can treat a function as just an object or a value (there's nothing special about
them)

. and mean different things!

0 refers to the object itself (in the environment diagram, it refers to what
the arrow is pointing to)

o actually calls and executes the body of the function

Slides by Antonio Kam (anto@)

29

HOF Example 1 (Functions as input)

double(x):
X *

square(x):
X *%

double_adder ():
f(x) + f(x)

double_adder(double,) # 72

double_adder(square,) # 718
Passed in two different functions

Slides by Antonio Kam (anto@)

HOF Example 2 (Functions as output)

Same thing as calling f(2)(3)

Slides by Antonio Kam (anto@)

31

HOF Example 2

The two above are equivalent statements!

(Notice how the lambda one takes up far less space!)

Slides by Antonio Kam (anto@)

32

Question 3 (5 minutes)

Draw the environment diagram for the following code and predict what Python will
output.

b(b, x):

B(x + a(x))

JJERRY)

Slides by Antonio Kam (anto@)

33

Question 4 (5 minutes)

Draw the environment diagram for the following code and predict what Python will
output.

make_adder(n):

k: K +n
add_ten = make_adder(n+)
result = add_ten(n)

e In the Global frame, the name points to a function object. What is the
intrinsic name of that function object, and what frame is its parent?

e What name is frame f2 labeled with (EXMagy or A)? Which frame is the parent of f2?

e What value is the variable result bound to in the Global frame?

Slides by Antonio Kam (anto@) 34

Question 5 (10 minutes)

Write a function that takes in a number §§ and returns a function that can take in a
single parameter [ga. When we pass in some condition function into this
returned function, it will print out numbers from fJ to [ij where calling on that
number returns [ifS-

make_keeper(n):

Slides by Antonio Kam (anto@)

35

Question 5

make_keeper(n) :

keeper () :

(i <=n):
cond(1i):
print(i)
i +=
keeper # remember this line!

Slides by Antonio Kam (anto@)

Currying

Currying is one application of the HOFs from earlier.

X : y: X +y

Instead of just any expression on the inside (for example E3E3R]), we use a function!

pow (
X *%* y

curried_pow(x):
f(y):
pow(x, V)
f

curried_pow() (")
1s the same as

pow(~,)
You will need as many inner functions as you have arguments

Slides by Antonio Kam (anto@)

37

Currying

e Curryingis the process of turning a function that takes in multiple arguments to one
that takes in one argument.
e What's the point?
o Sometimes functions with 1 argument are far easier to deal with

o Can create a bunch of functions that have slightly different starting values which
saves on repeating code

e Kind of hard to see the benefits until you write production code

Slides by Antonio Kam (anto@)

38

Question 7

Draw the environment diagram that results from executing the code below.

f(g, n)
(y: y())(f)

Slides by Antonio Kam (anto@)

Question 8

match_k (k) :

Slides by Antonio Kam (anto@)

Question 8

match_k(k):

Slides by Antonio Kam (anto@)

41

Question 8

match_k(k):

matcher(n):

n// (
n %

n //=

True
matcher

Slides by Antonio Kam (anto@)

% k)>

= (n // ('

False

*% Kk)) %

42

Mental Health Resources

e CAPS:
o If you need to talk to a professional, please call CAPS at 510-642-9494.
e After Hours Assistance

o For any assistance after hours, details on what to do can be found at this link

Slides by Antonio Kam (anto@)

43

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form

links.rouxl.es/feedback

Thanks for coming! €&

Please give me feedback on what to improve!

44

https://links.rouxl.es/feedback

