
Discussion 3
Recursion and Tree Recursion

Antonio Kam
anto [at] berkeley [dot] edu

Announcements
Lab 2 due today (2022/06/30)

HW 1 due today (2022/06/30)

Hog Checkpoint due tomorrow (2022/07/01)

Finish all of Phase 1 (all autograder tests passing) by then to get checkpoint credit

My office hours are 1-2 PM Tuesdays and 3-5 PM Wednesdays

I won't be in Berkeley from July 6th to July 11th (there will still be section at this
time; you'll just have someone covering for me!)

Attendance will still work even if you don't use the same form

S lides by Antonio Kam (anto@) 2

Temperature Check
Recursion

Tree Recursion

S lides by Antonio Kam (anto@) 3

Results from last section

S lides by Antonio Kam (anto@) 4

Questions and Comments from last section
Mini-lectures in the middle of labs are good!

Will continue to do this for future labs

I think the consensus is that a hybrid of whiteboarding and using slides is a pretty
good option

I'll do a mix with more focus on whiteboarding from here on

S lides by Antonio Kam (anto@) 5

All slides can be found on
teaching.rouxl.es

S lides by Antonio Kam (anto@) 6

https://teaching.rouxl.es/

What is recursion?
A recursive function is one where a function is defined in terms of itself.

Similar to higher-order functions except it returns a call to a function rather than the
function itself

Will be hearing me talk about this a lot: recursive leap of faith

S lides by Antonio Kam (anto@) 7

3 Steps of Recursion
1. Base Case

What is the smallest version of the problem we know the answer to?

I tend to think of this as the simplest input

2. Recursive Case (recursive call on a smaller version of the problem)

What can I do to reduce my input to something simpler?

Similar to while loops

3. Connecting it all together

Assuming your recursive call is correct (recursive leap of faith!), how do you
solve the real problem

S lides by Antonio Kam (anto@) 8

Example

def factorial(n):

if n == 0 or n == 1: # Base Case

return 1

else: # Recursive Case

return n * factorial(n - 1)

S lides by Antonio Kam (anto@) 9

Example
To calculate a factorial of an integer, what you do is multiply the integer itself with
the factorial of one less than itself

factorial(5) = 5 * factorial(4)

Notice the recursive pattern - factorial(4) will call factorial(3) , and so on and so
forth, until our base case is reached.

We know the result of factorial(1) , so calling factorial(1) will just return 1 (base
case)

S lides by Antonio Kam (anto@) 10

Example (Another Perspective)
What's the smallest input? What's the simplest problem I know the answer to?

0 is the smallest input - factorial(0) also returns 1 .

How can I reduce my problem?

If you have factorial(n) , you can reduce your problem down by calling
factorial(n - 1) .

In this step, you also assume your reduced problem gives you the correct answer
(so factorial(n - 1) gives you the correct result - which is the recursive leap of
faith)

How do I use that result to solve my problem?

Multiply by n

n * factorial(n - 1)

S lides by Antonio Kam (anto@) 11

Recursion vs Iteration

Recursion Iteration

Base case is needed for a recursive problem
A condition for a while
loop is needed

Need to reduce down to the base case
Need to reduce down to
the while condition

Can't use variables to keep track of values because they
reset (need a helper function for that)

Can have variables to keep
track of values.

Needs lots of frames - takes up memory Loops happen in 1 frame

S lides by Antonio Kam (anto@) 12

Recursion vs Iteration

Recursion

def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n - 1)

Iteration

def factorial(n):

 result = 1

while n > 0:

 result = result * n

 n -= 1

return result

S lides by Antonio Kam (anto@) 13

Question 1 (Walkthrough)
Write a function that takes two numbers m and n and returns their product. Assume m
and n are positive integers. Use recursion!

Hint: 5 * 3 = 5 + (5 * 2) = 5 + 5 + (5 * 1).

def multiply(m, n):

""" Takes two positive integers and returns their product using recursion.

 >>> multiply(5, 3)

 15

 """

"*** YOUR CODE HERE ***"

S lides by Antonio Kam (anto@) 14

Worksheet!
S lides by Antonio Kam (anto@) 15

Attendance
links.rouxl.es/disc

S lides by Antonio Kam (anto@) 16

https://links.rouxl.es/disc

Tree Recursion

S lides by Antonio Kam (anto@) 17

Tree Recursion
Tree recursion is recursion but with two (or more!) recursive calls

Useful when you need to break down a problem in more than 1 way

Useful when there are multiple choices to deal with at one function call

The recursive call diagram will expand similar to the roots of a tree

S lides by Antonio Kam (anto@) 18

Example 1: Recursive Fibonacci

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

Notice how this still follows the rules of recursion

We have base case(s)

We reduce our problem (fib(n - 1) and fib(n - 2))

We connect it together (with +)

Often you combine things with + , - , * , / or some other function (max , min , etc).

S lides by Antonio Kam (anto@) 19

Example 1: Recursive Fibonacci
You can also write down

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

S lides by Antonio Kam (anto@) 20

Worksheet!
S lides by Antonio Kam (anto@) 21

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 22

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 23

https://links.rouxl.es/feedback

