
Discussion 10
Scheme Data Abstractions

Antonio Kam

anto [at] berkeley [dot] edu

All slides can be found on

teaching.rouxl.es

S lides by Antonio Kam (anto@) 2

https://teaching.rouxl.es/

Announcements
Scheme Project has started

I liked this project quite a bit, but it is fairly technical

Checkpoint 1 due on Tuesday, Checkpoint 2 due on Friday (August 5th)

Checkpoints are worth points

Magic: the Lambda-ing due today!

S lides by Antonio Kam (anto@) 3

Results from last section

S lides by Antonio Kam (anto@) 4

Notes from last section
Once again, pretty much nothing

Please fill the forms in with something so I have something to say next time lol

I'm gonna fill this slide by saying we're super close to being done with this semester
 - you all got this!

S lides by Antonio Kam (anto@) 5

Temperature Check
Scheme

Scheme Lists

Scheme Data Abstractions

S lides by Antonio Kam (anto@) 6

What are data abstractions
In Python, we used classes to describe certain objects

Classes don't exist in scheme

As a result, data abstractions help to fill in this gap

If we want something in scheme to describe objects, we use data abstractions!

S lides by Antonio Kam (anto@) 7

Data abstractions
Constructors

Similar to __init__ in our classes

Function that builds our abstract data type

Selectors

Functions that receive information from the data type

Similar to getting an instance variable value (t.label , s.first)

S lides by Antonio Kam (anto@) 8

Example Data Abstraction (Python)
Constructor:

def couple(first, second):

return [first, second]

Selectors:

def first(couple):

return couple[0]

def second(couple):

return couple[1]

c = couple(1, 2)

c1, c2 = first(c), second(c) # c1 = 1, c2 = 2

S lides by Antonio Kam (anto@) 9

Example Data Abstraction (Scheme)
Constructor:

(define (couple first second) (list first second))

Selectors:

(define (first couple) (car couple))

(define (second couple) (car (cdr couple)))

(define c (couple 1 2))

(first c)

(second c)

S lides by Antonio Kam (anto@) 10

Idea
The idea of data abstractions here is that we don't think of the couple data
abstraction as a list with two elements, but rather simply as the descriptors

This is similar to real life where you don't think of driving a car as all its individual
parts, but just as a large abstraction

Data abstractions effectively hide the implementation from users - all people need to
use are the constructors and selectors

S lides by Antonio Kam (anto@) 11

Violating Data Abstraction Barriers
One thing you cannot do when it comes to data abstractions is violate the data
abstraction barriers.

This basically means that you must use the constructors and selectors when dealing
with data abstractions

This is because you do not necessarily know how the data abstractions are
implemented

S lides by Antonio Kam (anto@) 12

Example Data Abstraction (Python)
Constructor:

def couple(first, second):

return {"first": first, "second": second}

Selectors:

def first(couple):

return couple["first"]

def second(couple):

return couple["second"]

c = couple(1, 2)

c1, c2 = first(c), second(c) # c1 = 1, c2 = 2

S lides by Antonio Kam (anto@) 13

City
Let's say we have a definition for a city data abstraction

We just need the documentation for what the names mean, but we don't need to
know how it's implemented:

(make-city name lat lon)

(get-name city)

(get-lat city)

(get-lon city)

All we need to know is that we can use these definitions

S lides by Antonio Kam (anto@) 14

Worksheet!
S lides by Antonio Kam (anto@) 15

Attendance

links.rouxl.es/disc

S lides by Antonio Kam (anto@) 16

https://links.rouxl.es/disc

Scheme Trees
We've made the Tree class in Python before

Scheme doesn't have classes!

Let's make an Abstract Data Type instead

S lides by Antonio Kam (anto@) 17

Constructor:

(tree label branches)

branches is a list

Selectors:

(label t) - returns the label of the tree

(branches t) - returns a list of the branches of the tree

(define t

 (tree 5

 (list (tree 4 nil) (tree 7 nil))

))

(label t) -> 5

(label (car (branches t))) -> 4

S lides by Antonio Kam (anto@) 18

map in Scheme
(map) is Scheme's way of doing 'iteration'

Scheme doesn't have for loops, so we can't do for b in t.branches

We get around that with map

Very similar to list comprehensions

(map <proc> <lst>)

proc (procedure) must be a 1-argument function (important for later!)

Calls proc on each element in lst and returns a new list with that

S lides by Antonio Kam (anto@) 19

map in Scheme

(define (double x) (* x 2))

(define lst '(1 2 3 4))

(define new-lst (map double lst)) -> (2 4 6 8)

What if you pass in a 2 argument function?

S lides by Antonio Kam (anto@) 20

map in Scheme

(define (double x) (* x 2))

(define lst '(1 2 3 4))

(define new-lst (map double lst)) -> (2 4 6 8)

What if you pass in a 2 argument function?

Let's say I want to add 3 to every element

(define (add x y) (+ x y))

(define lst '(1 2 3 4))

(define new-lst (map (lambda (z) (add z 3)) lst)) -> (4 5 6 7)

S lides by Antonio Kam (anto@) 21

Worksheet!
S lides by Antonio Kam (anto@) 22

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 23

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 24

https://links.rouxl.es/feedback

