
Discussion 3
Recursion

Antonio Kam
anto [at] berkeley [dot] edu

Announcements
Hog checkpoint due tomorrow! Please do this it's very important

There's a project party instead of OH tomorrow from 3-6PM

S lides by Antonio Kam (anto@) 2

Temperature Check
Environment Diagrams

Higher-order Functions

Recursion

Tree Recursion

S lides by Antonio Kam (anto@) 3

Questions and Comments from last section
You're doing a good job

If we can do more practice problems, that’ll be great.

Depends on pacing - some concepts are a bit more abstract (e.g. environment
diagrams), while some other might be covered here in section before the lecture
itself (like tree recursion today)

If there's not enough time to complete an entire problem, could you still show the
answers please?

good point, will do

SHOW VID OF u SPEEDCUBing

S lides by Antonio Kam (anto@) 4

Questions and Comments from last section
more environment diagrams

we'll see them a lot more in the future, so don't worry about this

How hard would you rate the difficulty of exams for 61A based on your experiences
and others' feedback?

I think the exams are definitely hard, but they're doable with enough thinking

The amount of thinking time needed does vary though

Some things specifically applicable towards the hog project.

I prefer Dr Pepper over Coca-Cola

I've never actually tried Dr Pepper so I have no clue whether I can back this claim
or not lol

S lides by Antonio Kam (anto@) 5

All slides can be found on
teaching.rouxl.es

S lides by Antonio Kam (anto@) 6

https://teaching.rouxl.es/

What is recursion?
A recursive function is one where a function is defined in terms of itself.

Similar to higher-order functions except it returns a call to a function rather than the
function itself

Will be hearing me talk about this a lot: recursive leap of faith

S lides by Antonio Kam (anto@) 7

Analogy
Imagine you're in a line waiting for boba, but you don't know how many people there
are in front of you (and you want to count how many people there are in front of you)

In this case, you can ask the person in front of you about how many people they have
in front of them, and then they repeat this same process until...

The person at the front now tells the person behind them that there's nobody in front
of them

Then everyone just needs to add 1 to their answer, and bring it backwards from
there.

S lides by Antonio Kam (anto@) 8

3 Steps of Recursion
1. Base Case

What is the smallest version of the problem we know the answer to?

I tend to think of this as the simplest input

2. Recursive Case (recursive call on a smaller version of the problem)

What can I do to reduce my input to something simpler?

Similar to while loops

3. Connecting it all together

Assuming your recursive call is correct (recursive leap of faith!), how do you
solve the real problem

S lides by Antonio Kam (anto@) 9

Example with analogy
1. Base Case

I'm at the front of the line

2. Recursive Case (recursive call on a smaller version of the problem)

I ask the person in front of me to tell me how many people they have in front of
them (assume that the answer that they give is correct (recursive leap of faith))

3. Connecting it all together

Add 1 to their answer

S lides by Antonio Kam (anto@) 10

Example

def factorial(n):

if n == 0 or n == 1: # Base Case

return 1

else: # Recursive Case

return n * factorial(n - 1)

S lides by Antonio Kam (anto@) 11

Example
To calculate a factorial of an integer, what you do is multiply the integer itself with
the factorial of one less than itself

factorial(5) = 5 * factorial(4)

Notice the recursive pattern - factorial(4) will call factorial(3) , and so on and so
forth, until our base case is reached.

We know the result of factorial(1) , so calling factorial(1) will just return 1 (base
case)

S lides by Antonio Kam (anto@) 12

Example (Another Perspective)
What's the smallest input? What's the simplest problem I know the answer to?

0 is the smallest input - factorial(0) also returns 1 .

How can I reduce my problem?

If you have factorial(n) , you can reduce your problem down by calling
factorial(n - 1) .

In this step, you also assume your reduced problem gives you the correct answer
(so factorial(n - 1) gives you the correct result - which is the recursive leap of
faith)

How do I use that result to solve my problem?

Multiply by n

n * factorial(n - 1)

S lides by Antonio Kam (anto@) 13

Recursion vs Iteration

Recursion Iteration

Base case is needed for a recursive problem
A condition for a while
loop is needed

Need to reduce down to the base case
Need to reduce down to
the while condition

Can't use variables to keep track of values because they
reset (need a helper function for that)

Can have variables to keep
track of values.

Needs lots of frames - takes up memory Loops happen in 1 frame

S lides by Antonio Kam (anto@) 14

Recursion vs Iteration

Recursion

def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n - 1)

Iteration

def factorial(n):

 result = 1

while n > 0:

 result = result * n

 n -= 1

return result

S lides by Antonio Kam (anto@) 15

Worksheet!
S lides by Antonio Kam (anto@) 16

Tree Recursion

S lides by Antonio Kam (anto@) 17

Tree Recursion
Tree recursion is recursion but with two (or more!) recursive calls

Useful when you need to break down a problem in more than 1 way

Useful when there are multiple choices to deal with at one function call

The recursive call diagram will expand similar to the roots of a tree

S lides by Antonio Kam (anto@) 18

Example 1: Recursive Fibonacci

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

Notice how this still follows the rules of recursion

We have base case(s)

We reduce our problem (fib(n - 1) and fib(n - 2))

We connect it together (with +)

Often you combine things with + , - , * , / or some other function (max , min , etc).

S lides by Antonio Kam (anto@) 19

Example 1: Recursive Fibonacci
You can also write down

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

S lides by Antonio Kam (anto@) 20

Worksheet!
S lides by Antonio Kam (anto@) 21

Results from last section (links.rouxl.es/disc)

S lides by Antonio Kam (anto@) 22

https://links.rouxl.es/disc

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 23

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 24

https://links.rouxl.es/feedback

