
Discussion 4
Mutability + Data Abstraction + Trees

Antonio Kam
anto [at] berkeley [dot] edu

Announcements
Cats got released

Be on the lookout for question 7 - start early, and start often

Getting started videos

S lides by Antonio Kam (anto@) 2

Comments from last section
I'm hungry

I agree!

Question: who eats breakfast in the morning

who ate breakfast in the morning?

Could you send out an email with answers to discussion questions so we can do on
our own after.

Discussion solutions are always uploaded on the website! (both on cs61a.org and
on teaching.rouxl.es), so you'll be able to do them on your own

More recursion

can y'all put down more stuff please there were only 3 things worth noting

S lides by Antonio Kam (anto@) 3

http://cs61a.org/
http://teaching.rouxl.es/

Temperature Check
Lists

List Slicing

List Comprehensions

Mutability

Data Abstractions

Trees

S lides by Antonio Kam (anto@) 4

All slides can be found on
teaching.rouxl.es

S lides by Antonio Kam (anto@) 5

https://teaching.rouxl.es/

Mutability
S lides by Antonio Kam (anto@) 6

List Mutation Functions (adding)
.append(element)

Adds elements to the end of the list

All elements go in one new box (can get nested lists if the element passed in is a
list)

.extend(iterable)

Concatenates two lists together (typcially iterable is a list)

.insert(index, element)

Inserts element at index

Does not replace elements - this operation instead makes the list longer.

All these functions return None once you use them

S lides by Antonio Kam (anto@) 7

List Mutation Functions (removing)
.remove(element)

Removes first appearance of element in list

Errors if it's unable to remove an element

.pop(optional index)

Removes and returns element at the given index

If index is not provided, it defaults to the last element in the list.

S lides by Antonio Kam (anto@) 8

Mutating Lists
List mutation functions can modify an existing list

Slicing will create a new list

Examples later

a = a + b will create a new list

a += b does not create a new list

Indexing into a list and changing the element at that list will mutate the list:

a[0] = 7 will change the first element in a to be 7.

S lides by Antonio Kam (anto@) 9

Identity vs Equality
is will check whether 2 objects are the same thing (i.e. pointing to the same object)

== will check if two objects have the same value

S lides by Antonio Kam (anto@) 10

Identity vs Equality
is will check whether 2 objects are the same thing (i.e. pointing to the same object)

== will check if two objects have the same value

a = [1, 2, 3]

b = [1, 2, 3]

a == b # True

a is b # False

S lides by Antonio Kam (anto@) 11

Mutating Lists (Example)

lst1 = [1, 2, 3]

lst2 = lst1

lst3 = lst1[:]

test1a = lst1 == lst2

test1b = lst1 == lst3

test2a = lst1 is lst2

test2b = lst1 is lst3

lst1.append(3)

lst1 = lst1 + [4]

(For those reading the slides later, put this into tutor.cs61a.org)

S lides by Antonio Kam (anto@) 12

https://tutor.cs61a.org/

Shallow Copy vs Deep Copy
Shallow Copy

Only copies the first layer of a list

If we have a nested list, we only copy the arrow (not the list itself)

Create a new list where you copy over whatever is in the same box

Deep Copy

Makes a complete copy of everything in a list

Very slow operation - no easy way to do this

Python uses shallow copies (as do most languages) when copying lists!

S lides by Antonio Kam (anto@) 13

Example: Shallow Copy vs Deep Copy

lst1 = [1, 2, [3, 4], 5]

lst2 = lst1[:]

(For those reading the slides later, put this into tutor.cs61a.org)

S lides by Antonio Kam (anto@) 14

https://tutor.cs61a.org/

Worksheet!
S lides by Antonio Kam (anto@) 15

Data Abstractions

S lides by Antonio Kam (anto@) 16

What are Data Abstractions?
Data abstractions are a super powerful way to let people treat code as objects,
rather than knowing how the thing works itself

Allows you to worry about how something works, rather than how something is
implemented

You'll see a lot of abstractions in other courses (Data 8, Data 100 are filled with
abstractions of some sort)

S lides by Antonio Kam (anto@) 17

What are Data Abstractions?
Data abstractions have the following:

Constructors: Used to build the abstract data type

IMPORTANT: You do not need to know how the programmer decided to
implement this!

Selectors: Used to interact with the data type

S lides by Antonio Kam (anto@) 18

Example: Tree Data Abstraction
Trees are recursive data structures (as in, trees contain more trees)

Important terms:

Root Node

Branch(es)

This will be a list!

Leaf Node

Children

Sort of looks like an upside-down tree compared to the real world

Questions are generally solved using tree recursions

S lides by Antonio Kam (anto@) 19

S lides by Antonio Kam (anto@) 20

Tree ADT Implementation:

def tree(label, branches=[]):

"""Construct a tree with the given label value and a list of branches."""

return [label] + list(branches) # All items in branches must be trees!

def label(tree):

"""Return the label value of a tree."""

return tree[0]

def branches(tree):

"""Return the list of branches of the given tree."""

return tree[1:]

def is_leaf(tree):

return not branches(tree)

S lides by Antonio Kam (anto@) 21

Tree Example:

t = tree(1,

 [tree(3,

 [tree(4),

 tree(5),

 tree(6)]),

 tree(2)])

S lides by Antonio Kam (anto@) 22

Worksheet!
S lides by Antonio Kam (anto@) 23

Results from last section (links.rouxl.es/disc)

S lides by Antonio Kam (anto@) 24

https://links.rouxl.es/disc

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 25

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 26

https://links.rouxl.es/feedback

