
Discussion 6
OOP

Antonio Kam
anto [at] berkeley [dot] edu

Announcements
Ants gets released very soon!

My favorite project by far

HW 04 on Iterators/Generators

Problems are kinda hard - Office Hours can be pretty useful for this

S lides by Antonio Kam (anto@) 2

Notes from last section
favorite sport

basketball

how much did u score for ur mt1

not relevant

mental health recovery methods after midterms

will talk more about this later

ginger ale is the superior soda

i think i've never tried?

S lides by Antonio Kam (anto@) 3

Notes from last section
last discussion was good

Can you sing us a song?

might do it for the last discussion (i'd only really want to do this if i have my piano,
so i'll have to bring it over on the last day probably)

It’s ok if you don’t like Dr Pepper. In my opinion, it will always stay the best drink in
the world

Entity Cramming in Minecraft

I've seen some crazy stuff been done with entity cramming

Minecraft + CS 61C

S lides by Antonio Kam (anto@) 4

Midterm
Important to mention that the midterm is worth 64 points out of the total 300

Exams are not the only component of your grade in this class - you have
discussion/lab attendance, and homeworks/projects where you're given unlimited
attempts, and there are also no hidden tests

This means that quite a large portion of the points in this course are not based on
exam performance.

Many people struggle on exams; it's completely normal to not feel too good about
your own performance (in fact, quite a lot of exams in higher education will have
averages lower than what you may have been used to in HS)

S lides by Antonio Kam (anto@) 5

Temperature Check
OOP

Inheritance

S lides by Antonio Kam (anto@) 6

All slides can be found on
teaching.rouxl.es

S lides by Antonio Kam (anto@) 7

https://teaching.rouxl.es/

Object-Oriented
Programming

S lides by Antonio Kam (anto@) 8

What is OOP?
One way I like to think of OOP is as a sort of 'advanced' data abstraction

You would use OOP for similar things that you would use data abstractions for

Can make a City class, for example

OOP also allows for inheritance (less repetition of code, more on this later/next
discussion)

OOP also allows for mutation

Similar to list mutation (.append , .extend , etc.)

You may have seen this if you've seen Java before (I didn't have any exposure to OOP
when I took CS 61A for the first time)

S lides by Antonio Kam (anto@) 9

OOP Terminology
Class

A class is sort of a 'blueprint' for something. You can think of it as a template for
creating an object

Instance

An instance of a class is one object of that blueprint, or one physical object that
you create based on your template

Variables

Instance Variables: Variables unique to each instance (each actual object)

Class Variables: Variables shared between each instance in the same class

Method

Function bound to a class

S lides by Antonio Kam (anto@) 10

Functions vs Methods
Methods need to take in self as an argument

This is very often implicitly passed in when the thing on the left side of the dot is
an instance

my_car.drive(100) is the same as Car.drive(my_car, 100)

self refers to the actual instance (rather than the class)

Two ways of calling methods:

Class.method(self, args)

instance.method(args)

S lides by Antonio Kam (anto@) 11

Q1 Mini-lecture

S lides by Antonio Kam (anto@) 12

Worksheet!
S lides by Antonio Kam (anto@) 13

Inheritance
S lides by Antonio Kam (anto@) 14

Inheritance
class Dog():

def __init__(self, name, owner):

 self.is_alive = True

 self.name = name

 self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says woof!")

class Cat():

def __init__(self, name, owner, lives=9):

 self.is_alive = True

 self.name = name

 self.owner = owner

 self.lives = lives

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says meow!")

S lides by Antonio Kam (anto@) 15

Inheritance
Notice the redundancies in the code? One of the core foundations in this class is to not
repeat yourself (DRY)

Instead, you can use inheritance to solve this problem

Syntax when creating a class is to put brackets around the class you want to inherit:

class Cat(Pet): # Cat inherits the Pet class - as in, all cats are pets (in this world)

 ...

S lides by Antonio Kam (anto@) 16

Inheritance

class Pet():

def __init__(self, name, owner):

 self.is_alive = True # It's alive!!!

 self.name = name

 self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name)

class Dog(Pet): # Inherits all methods/variables from the Animal class

def talk(self):

print(self.name + ' says woof!')

S lides by Antonio Kam (anto@) 17

Inheritance - super()
Calling super() will refer to the class's superclass

You can use the parent's method and then add on to that.

class Cat(Pet): # Inherits all methods/variables from the Animal class

def __init__(self, name, owner, lives = 9):

super().__init__(name, owner)

same as calling Pet.__init__(self, name, owner) from here

 self.lives = 9

def talk(self):

print(self.name + ' says meow!')

S lides by Antonio Kam (anto@) 18

Worksheet!
S lides by Antonio Kam (anto@) 19

Results from last section (links.rouxl.es/disc)

S lides by Antonio Kam (anto@) 20

https://links.rouxl.es/disc

Worksheet!
S lides by Antonio Kam (anto@) 21

Mental Health Resources
CAPS:

If you need to talk to a professional, please call CAPS at 510-642-9494.

After Hours Assistance

For any assistance after hours, details on what to do can be found at this link

S lides by Antonio Kam (anto@) 22

https://uhs.berkeley.edu/after-hours

Anonymous Feedback Form
links.rouxl.es/feedback

Thanks for coming!

Please give me feedback on what to improve!

S lides by Antonio Kam (anto@) 23

https://links.rouxl.es/feedback

